Mevalonate Kinase Deficiency and Neuroinflammation: Balance between Apoptosis and Pyroptosis
نویسندگان
چکیده
Mevalonic aciduria, a rare autosomal recessive disease, represents the most severe form of the periodic fever, known as Mevalonate Kinase Deficiency. This disease is caused by the mutation of the MVK gene, which codes for the enzyme mevalonate kinase, along the cholesterol pathway. Mevalonic aciduria patients show recurrent fever episodes with associated inflammatory symptoms, severe neurologic impairments, or death, in early childhood. The typical neurodegeneration occurring in mevalonic aciduria is linked both to the intrinsic apoptosis pathway (caspase-3 and -9), which is triggered by mitochondrial damage, and to pyroptosis (caspase-1). These cell death mechanisms seem to be also related to the assembly of the inflammasome, which may, in turn, activate pro-inflammatory cytokines and chemokines. Thus, this particular molecular platform may play a crucial role in neuroinflammation mechanisms. Nowadays, a specific therapy is still lacking and the pathogenic mechanisms involving neuroinflammation and neuronal dysfunction have not yet been completely understood, making mevalonic aciduria an orphan drug disease. This review aims to analyze the relationship among neuroinflammation, mitochondrial damage, programmed cell death, and neurodegeneration. Targeting inflammation and degeneration in the central nervous system might help identify promising treatment approaches for mevalonic aciduria or other diseases in which these mechanisms are involved.
منابع مشابه
Molecular mechanisms responsible for neuroinflammation and neurological impairments in mevalonate kinase deficiency☆
Mevalonate kinase deficiency (MKD) is due to by pathogenic mutations in the MVK gene that cause a reduced activity of the enzyme [1]. Specifically, it is characterized by psychomotor retardation, failure to thrive, progressive cerebellar ataxia, dysmorphic features, progressive visual impairment and recurrent fevers. Although the knowledge of MKD pathogenesis has increased, the link between gen...
متن کاملBlock of the Mevalonate Pathway Triggers Oxidative and Inflammatory Molecular Mechanisms Modulated by Exogenous Isoprenoid Compounds
Deregulation of the mevalonate pathway is known to be involved in a number of diseases that exhibit a systemic inflammatory phenotype and often neurological involvements, as seen in patients suffering from a rare disease called mevalonate kinase deficiency (MKD). One of the molecular mechanisms underlying this pathology could depend on the shortage of isoprenoid compounds and the subsequent mit...
متن کاملGeranylgeraniol and Neurological Impairment: Involvement of Apoptosis and Mitochondrial Morphology
Deregulation of the cholesterol pathway is an anomaly observed in human diseases, many of which have in common neurological involvement and unknown pathogenesis. In this study we have used Mevalonate Kinase Deficiency (MKD) as a disease-model in order to investigate the link between the deregulation of the mevalonate pathway and the consequent neurodegeneration. The blocking of the mevalonate p...
متن کاملLack of Prenylated Proteins, Autophagy Impairment and Apoptosis in SH-SY5Y Neuronal Cell Model of Mevalonate Kinase Deficiency.
BACKGROUND/AIMS Mevalonate Kinase Deficiency (MKD), is a hereditary disease due to mutations in mevalonate kinase gene (MVK). MKD has heterogeneous clinical phenotypes: the correlation between MVK mutations and MKD clinical phenotype is still to be fully elucidated. Deficiency of prenylated proteins has been hypothesized as possible MKD pathogenic mechanism. Based on this hypothesis and conside...
متن کاملCaspase inhibition in neuroinflammation induced by soluble β amyloid monomer, protects cells from abnormal survival and proliferation, via attenuation of NFқB activity
Introduction: Evidence suggests that neuronal apoptosis in neurodegenerative diseases is correlated with inflammatory reactions. The beneficial or detrimental role of apoptosis in neuroinflammation is unclear. Elucidating this question may be helpful in management of neurodegenerative diseases. Since TNF-α is able to induce apoptosis as well as increased viability of the cells by activation ...
متن کامل